
Stratified flows with variable density: mathematical mod-
elling and numerical challenges.
Investigation of sediment transport processes due to geophysical flows. EGU2017, Vienna.

J. Murillo, A. Navas-Montilla

Fluid Mechanics. EINA, University of Zaragoza
Javier.Murillo@unizar.es , anavas@unizar.es

Abstract

Stratified flows appear in a wide variety of fundamental problems in hydro-

logical and geophysical sciences. They may involve from hyperconcentrated

floods carrying sediment causing collapse, landslides and debris flows, to sus-

pended material in turbidity currents where turbulence is a key process. Also,

in stratified flows variable horizontal density is present. Depending on the case,

density varies according to the volumetric concentration of different components

or species that can represent transported or suspended materials or soluble sub-

stances. Multilayer approaches based on the shallow water equations provide

suitable models but are not free from difficulties when moving to the numerical

resolution of the governing equations. Considering the variety of temporal and

spatial scales, transfer of mass and energy among layers may strongly differ from

one case to another. As a consequence, in order to provide accurate solutions,

very high order methods of proved quality are demanded. Under these com-

plex scenarios it is necessary to observe that the numerical solution provides the

expected order of accuracy but also converges to the physically based solution,

which is not an easy task. A 2D case that includes interaction with obstacles

illustrates the stability and robustness of the numerical scheme in presence of

non-uniform density and wetting/drying fronts.

1. Introduction

When we solve the two-layer system, several difficulties arise. First,

the system is conditionally hyperbolic. If the difference of the veloc-

ities of two layers becomes large enough, then the system loses hy-

perbolicity, and we expect Kelvin-Helmholtz instability. Secondly, we

cannot find the explicit expression for the eigenvalues of the two layer

system. Also we need a numerical scheme which is well-balancing

with source term since the system is non-conserve. The two-layer

shallow water system is accepted as numerical model not only for the

flows with different densities but also for the tsunamis generated by

underwater landslides.

2. Mathematical model

The model involves the following assumptions: (i) shallow-water ap-

proach: the flow is oriented in a predominantly horizontal direction

and is confined to a layer which is thin compared to the horizontal

scale of interest; (ii) the mixture of water and sediments is described

by using the continuum approach and assuming the same velocity for

the liquid and for the solid/dissolved phases; (iii) morphodynamic in-

terface: the bed boundary Γb is fixed in time and (iv) variable density

in each layer.

Accordingly, φp represents the scalar depth-averaged volumetric con-

centration of component p, with p = 1, ..., Np and Np the number of

different components transported. The mixture density is given by ρwr

where ρw is the density of the water and r represents the relative den-

sity of the bulk mixture to that of the clean water

r = 1 +

Np∑

p=1

∆pφp (1)

where ∆p = (ρp − ρw)/ρw is the relative buoyant density of the solid

phase p. We assume that dissolved species with low concentration do

not change bulk density ∆p = 0.

The relevant formulation of the model derives, respectively, from the

depth-averaged equation of bulk mass conservation, mixture momen-

tum conservation and conservation of the mass of the different con-

stituents. That system of partial differential equations is used here in

coupled form.

3. Applications

The performance of the Reduced Godunov scheme for multicompo-

nent flow is analyzed by means of two dam break numerical experi-

ments in a rectangular tank, 7 m long and 4m wide. The tank bed in-

clude two obstacles. Both dam break numerical test share the same ini-

tial apparent density in both layers are presented here, different among

layers, due to the difference in the concentration of solid/dissolved

phases, always much larger in the lower layer. Initial conditions also

involve variations in the density of each layer. In test 1 ∆p is vari-

able for three different components, with ∆1=1.30, ∆1=1.40, ∆1=1.60

while volumetric concentration is set constant in each region defining

the dam-break problem. In test 2 ∆1=∆1=∆1=1.65 is constant for the

three different components but concentration varies in each transported

material following a sinusoidal pattern.

In order to provide a more realistic mathematical formulation of shal-

low flows in environmental analysis, a conservative and robust nu-

merical scheme able to handle with complex situations is used. The

system of equations is formed by the 2D shallow water equations, re-

taining horizontal density variation for mass and momentum of the

mixture, supplemented by supplemented by equations for the mass or

volume fraction of the mixture constituents. The original Roe’s aver-

age values for clean water have been extended to include the variation

of density, written in terms of volumetric concentration of the differ-

ent constituents. The resulting approximate Jacobian matrix satisfies

the consistency condition, that is a prior requirement when defining

approximate solvers.
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Figure 1: Initial condition for at t = 0 s (a) for water level surface, (b) volumetric concentration φ1,1 and φ1,2 for layers 1

and 2 in test 1, (c) volumetric concentration φ1,1 and φ1,2 for layers 1 and 2 in test 2 and (d) volumetric concentration φ2,1

and φ2,2 for layers 1 and 2 in test 2.



The results show that the initial discontinuities produce a complex

pattern of shocks and rarefactions that interact with the bed irregulari-

ties following the same tendency on both grids. The waves travel at the

same speed and the areas covered or uncovered by the wetting/drying

fronts are almost identical in both test cases. The observed surface

waves are similar in both cases. Initial conditions in the concentra-

tion have not a great influence on the velocity fields obtained, that are

very similar. Numerical diffusion linked to transport is the responsi-

ble for this difference, and may be reduced by using high order. The

numerical results show, how, even using different but equivalent initial

concentrations, the numerical scheme is able to reproduce the same

results, involving wet/dry fronts for both coupled layers.
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Figure 1: Test case 1. From upper to lower: numerical solution at t = 6 s for volumetric concentration φ1,1 and φ1,2 for

layers 1 and 2, water surface elevation for layers 1 and 2, module of the velocity for layers 1 and 2 and vector velocity

map for layer 1.
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Figure 2: Test case 1. From upper to lower: numerical solution at t = 6 s for volumetric concentration φ1,1 in layer 1 and

φ1,2 for layer 2, volumetric concentration φ2,1 in layer 1 and φ2,2 for layer 2, module of the velocity for layers 1 and 2 and

vector velocity map for layer 1.
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